Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 15(4): e0032124, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38426750

RESUMEN

Human immunodeficiency virus type 1 typically requires a high density of CD4 for efficient entry as a mechanism to target CD4+ T cells (T-tropic), with CCR5 being used most often as the coreceptor. When target T cells are limiting, the virus can evolve to infect cells with a low density of CD4 such as macrophages (M-tropic). The entry phenotype is known to be encoded in the viral Env protein on the surface of the virus particle. Using data showing a dose response for infectivity based on CD4 surface density, we built a model consistent with T-tropic viruses requiring multiple CD4 molecules to mediate infection, whereas M-tropic viruses can infect cells using a single CD4 receptor molecule interaction. We also found that T-tropic viruses bound to the surface of cells with a low density of CD4 are released more slowly than M-tropic viruses which we modeled to be due to multiple interactions of the T-tropic virus with multiple CD4 molecules to allow the initial stable binding. Finally, we found that some M-tropic Env proteins, as the gp120 subunit, possess an enhanced affinity for CD4 compared with their T-tropic pair, indicating that the evolution of macrophage tropism can be reflected both in the closed Env trimer conformation on the virion surface and, in some cases, also in the open confirmation of gp120 Env. Collectively, these studies reveal differences in the stoichiometry of interaction of T-tropic and M-tropic viruses with CD4 and start to identify the basis of binding differences at the biochemical level. IMPORTANCE: Human immunodeficiency virus type 1 normally targets CD4+ T cells for viral replication. When T cells are limiting, the virus can evolve to infect myeloid cells. The evolutionary step involves a change from requiring a high surface density of CD4 for entry to being able to infect cells with a low density of CD4, as is found on myeloid lineage cells such as macrophage and microglia. Viruses able to infect macrophages efficiently are most often found in the CNS late in the disease course, and such viruses may contribute to neurocognitive impairment. Here, we examine the CD4 binding properties of the viral Env protein to explore these two different entry phenotypes.


Asunto(s)
VIH-1 , Humanos , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos , Productos del Gen env/metabolismo , VIH-1/fisiología , Macrófagos/metabolismo , Receptores CCR5/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana
2.
Protein Sci ; 32(8): e4713, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37368504

RESUMEN

Many protein therapeutics are competitive inhibitors that function by binding to endogenous proteins and preventing them from interacting with native partners. One effective strategy for engineering competitive inhibitors is to graft structural motifs from a native partner into a host protein. Here, we develop and experimentally test a computational protocol for embedding binding motifs in de novo designed proteins. The protocol uses an "inside-out" approach: Starting with a structural model of the binding motif docked against the target protein, the de novo protein is built by growing new structural elements off the termini of the binding motif. During backbone assembly, a score function favors backbones that introduce new tertiary contacts within the designed protein and do not introduce clashes with the target binding partner. Final sequences are designed and optimized using the molecular modeling program Rosetta. To test our protocol, we designed small helical proteins to inhibit the interaction between Gαq and its effector PLC-ß isozymes. Several of the designed proteins remain folded above 90°C and bind to Gαq with equilibrium dissociation constants tighter than 80 nM. In cellular assays with oncogenic variants of Gαq , the designed proteins inhibit activation of PLC-ß isozymes and Dbl-family RhoGEFs. Our results demonstrate that computational protein design, in combination with motif grafting, can be used to directly generate potent inhibitors without further optimization via high throughput screening or selection.


Asunto(s)
Proteínas de Unión al GTP , Isoenzimas , Unión Proteica , Modelos Moleculares , Ingeniería de Proteínas/métodos
3.
bioRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034763

RESUMEN

Many protein therapeutics are competitive inhibitors that function by binding to endogenous proteins and preventing them from interacting with native partners. One effective strategy for engineering competitive inhibitors is to graft structural motifs from a native partner into a host protein. Here, we develop and experimentally test a computational protocol for embedding binding motifs in de novo designed proteins. The protocol uses an "inside-out" approach: Starting with a structural model of the binding motif docked against the target protein, the de novo protein is built by growing new structural elements off the termini of the binding motif. During backbone assembly, a score function favors backbones that introduce new tertiary contacts within the designed protein and do not introduce clashes with the target binding partner. Final sequences are designed and optimized using the molecular modeling program Rosetta. To test our protocol, we designed small helical proteins to inhibit the interaction between Gα q and its effector PLC-ß isozymes. Several of the designed proteins remain folded above 90°C and bind to Gα q with equilibrium dissociation constants tighter than 80 nM. In cellular assays with oncogenic variants of Gα q , the designed proteins inhibit activation of PLC-ß isozymes and Dbl-family RhoGEFs. Our results demonstrate that computational protein design, in combination with motif grafting, can be used to directly generate potent inhibitors without further optimization via high throughput screening or selection. statement for broader audience: Engineered proteins that bind to specific target proteins are useful as research reagents, diagnostics, and therapeutics. We used computational protein design to engineer de novo proteins that bind and competitively inhibit the G protein, Gα q , which is an oncogene for uveal melanomas. This computational method is a general approach that should be useful for designing competitive inhibitors against other proteins of interest.

4.
J Food Sci Technol ; 60(3): 879-888, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908345

RESUMEN

The present study focused on the effect of different drying temperatures (40, 50, 60 and 70 °C) and combination of pre-treatments: potassium metabisulphite (KMS), potassium metabisulphite + Citric acid + blanching (KCB)] on functional, thermo-pasting and antioxidant properties of elephant foot yam (EFY) powder. Drying temperature and pretreatment reduces the water and oil absorption capacity, and the highest values were 2.34 g/g and 1.19 g/g for drying at 40 °C for the untreated sample, respectively. KMS pretreatment enhanced the bulk density, foaming capacity, emulsion capacity, and emulsion stability with an increase in drying temperature. Pasting temperature and viscosity decreased with an increase in drying temperature, and the maximum was observed at 40 °C for KMS pretreatment. Blanching increases the gelatinization temperature resulting in higher mid-and end-temperatures for KCB pretreatment. The antioxidant properties decreased with an increase in the drying temperature and were found to be minimal in the case of KCB treated samples.

5.
Protein Sci ; 32(3): e4578, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36705186

RESUMEN

Immune checkpoint inhibitors that bind to the cell surface receptor PD-L1 are effective anti-cancer agents but suffer from immune-related adverse events as PD-L1 is expressed on both healthy and cancer cells. To mitigate toxicity, researchers are testing prodrugs that have low affinity for checkpoint targets until activated with proteases enriched in the tumor microenvironment. Here, we engineer a prodrug form of a PD-L1 inhibitor. The inhibitor is a soluble PD-1 mimetic that was previously engineered to have high affinity for PD-L1. In the basal state, the binding surface of the PD-1 mimetic is masked by fusing it to a soluble variant of its natural ligand, PD-L1. Proteolytic cleavage of the linker that connects the mask to the inhibitor activates the molecule. To optimize the mask so that it effectively blocks binding to PD-L1 but releases upon cleavage, we tested a set of mutants with varied affinity for the inhibitor. The top-performing mask reduces the affinity of the prodrug for PD-L1 120-fold, and binding is nearly fully recovered upon cleavage. In a cell-based assay measuring inhibition of the PD-1:PD-L1 interaction on the surface of cells, the IC50s of the masked inhibitors were up to 40-fold higher than their protease-treated counterparts. The changes in activity we observe upon protease treatment are comparable to systems currently tested in the clinic and provide evidence that natural binding partners are an excellent starting point for creating a prodrug.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Profármacos , Antígeno B7-H1/metabolismo , Péptido Hidrolasas , Receptor de Muerte Celular Programada 1/metabolismo
6.
Protein Sci ; 31(7): e4368, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35762713

RESUMEN

Using the molecular modeling program Rosetta, we designed a de novo protein, called SEWN0.1, which binds the heterotrimeric G protein Gαq. The design is helical, well-folded, and primarily monomeric in solution at a concentration of 10 µM. However, when we solved the crystal structure of SEWN0.1 at 1.9 Å, we observed a dimer in a conformation incompatible with binding Gαq . Unintentionally, we had designed a protein that adopts alternate conformations depending on its oligomeric state. Recently, there has been tremendous progress in the field of protein structure prediction as new methods in artificial intelligence have been used to predict structures with high accuracy. We were curious if the structure prediction method AlphaFold could predict the structure of SEWN0.1 and if the prediction depended on oligomeric state. When AlphaFold was used to predict the structure of monomeric SEWN0.1, it produced a model that resembles the Rosetta design model and is compatible with binding Gαq , but when used to predict the structure of a dimer, it predicted a conformation that closely resembles the SEWN0.1 crystal structure. AlphaFold's ability to predict multiple conformations for a single protein sequence should be useful for engineering protein switches.


Asunto(s)
Inteligencia Artificial , Proteínas , Secuencia de Aminoácidos , Modelos Moleculares , Conformación Proteica , Proteínas/química
7.
J Biol Chem ; 298(7): 102079, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35643320

RESUMEN

Dengue viruses (DENV serotypes 1-4) and Zika virus (ZIKV) are related flaviviruses that continue to be a public health concern, infecting hundreds of millions of people annually. The traditional live-attenuated virus vaccine approach has been challenging for the four DENV serotypes because of the need to achieve balanced replication of four independent vaccine components. Subunit vaccines represent an alternative approach that may circumvent problems inherent with live-attenuated DENV vaccines. In mature virus particles, the envelope (E) protein forms a homodimer that covers the surface of the virus and is the major target of neutralizing antibodies. Many neutralizing antibodies bind to quaternary epitopes that span across both E proteins in the homodimer. For soluble E (sE) protein to be a viable subunit vaccine, the antigens should be easy to produce and retain quaternary epitopes recognized by neutralizing antibodies. However, WT sE proteins are primarily monomeric at conditions relevant for vaccination and exhibit low expression yields. Previously, we identified amino acid mutations that stabilize the sE homodimer from DENV2 and dramatically raise expression yields. Here, we tested whether these same mutations raise the stability of sE from other DENV serotypes and ZIKV. We show that the mutations raise thermostability for sE from all the viruses, increase production yields from 4-fold to 250-fold, stabilize the homodimer, and promote binding to dimer-specific neutralizing antibodies. Our findings suggest that these sE variants could be valuable resources in the efforts to develop effective subunit vaccines for DENV serotypes 1 to 4 and ZIKV.


Asunto(s)
Virus del Dengue , Vacunas de Subunidad , Proteínas del Envoltorio Viral , Vacunas Virales , Virus Zika , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Reacciones Cruzadas , Dengue/prevención & control , Virus del Dengue/genética , Epítopos , Humanos , Mutación , Vacunas Atenuadas , Vacunas de Subunidad/genética , Proteínas del Envoltorio Viral/genética , Vacunas Virales/genética , Virus Zika/genética , Infección por el Virus Zika/prevención & control
8.
Biomolecules ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35053216

RESUMEN

A high number of leucocytes reside in the human endometrium and are distributed differentially during the menstrual cycle and pregnancy. During early pregnancy, decidual natural killer (dNK) cells are the most common type of natural killer (NK) cells in the uterus. The increase in the number of uterine NK (uNK) cells during the mid-secretory phase of the menstrual cycle, followed by further increase of dNK cells in early pregnancy, has heightened interest in their involvement during pregnancy. Extensive research has revealed various roles of dNK cells during pregnancy including the formation of new blood vessels, migration of trophoblasts, and immunological tolerance. The present review article is focused on the significance of NK cells during pregnancy and their role in pregnancy-related diseases. The article will provide an in-depth review of cellular and molecular interactions during pregnancy and related disorders, with NK cells playing a pivotal role. Moreover, this study will help researchers to understand the physiology of normal pregnancy and related complications with respect to NK cells, so that future research work can be designed to alleviate the complications.


Asunto(s)
Decidua/inmunología , Tolerancia Inmunológica , Células Asesinas Naturales/inmunología , Complicaciones del Embarazo/inmunología , Trofoblastos/inmunología , Femenino , Humanos , Embarazo
9.
Sci Adv ; 7(42): eabg4084, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34652943

RESUMEN

Dengue virus (DENV) is a worldwide health burden, and a safe vaccine is needed. Neutralizing antibodies bind to quaternary epitopes on DENV envelope (E) protein homodimers. However, recombinantly expressed soluble E proteins are monomers under vaccination conditions and do not present these quaternary epitopes, partly explaining their limited success as vaccine antigens. Using molecular modeling, we found DENV2 E protein mutations that induce dimerization at low concentrations (<100 pM) and enhance production yield by more than 50-fold. Cross-dimer epitope antibodies bind to the stabilized dimers, and a crystal structure resembles the wild-type (WT) E protein bound to a dimer epitope antibody. Mice immunized with the stabilized dimers developed antibodies that bind to E dimers and not monomers and elicited higher levels of DENV2-neutralizing antibodies compared to mice immunized with WT E antigen. Our findings demonstrate the feasibility of using structure-based design to produce subunit vaccines for dengue and other flaviviruses.

10.
Cancers (Basel) ; 13(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202265

RESUMEN

Colorectal cancer (CRC) is the World's third most frequently diagnosed cancer type. It accounted for about 9.4% mortality out of the total incidences of cancer in the year 2020. According to estimated facts by World Health Organization (WHO), by 2030, 27 million new CRC cases, 17 million deaths, and around 75 million people living with the disease will appear. The facts and evidence that establish a link between the intestinal microflora and the occurrence of CRC are quite intuitive. Current shortcomings of chemo- and radiotherapies and the unavailability of appropriate treatment strategies for CRC are becoming the driving force to search for an alternative approach for the prevention, therapy, and management of CRC. Probiotics have been used for a long time due to their beneficial health effects, and now, it has become a popular candidate for the preventive and therapeutic treatment of CRC. The probiotics adopt different strategies such as the improvement of the intestinal barrier function, balancing of natural gut microflora, secretion of anticancer compounds, and degradation of carcinogenic compounds, which are useful in the prophylactic treatment of CRC. The pro-apoptotic ability of probiotics against cancerous cells makes them a potential therapeutic candidate against cancer diseases. Moreover, the immunomodulatory properties of probiotics have created interest among researchers to explore the therapeutic strategy by activating the immune system against cancerous cells. The present review discusses in detail different strategies and mechanisms of probiotics towards the prevention and treatment of CRC.

11.
Nat Commun ; 11(1): 5522, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139698

RESUMEN

Tauopathies including Alzheimer's disease (AD) are marked by the accumulation of aberrantly modified tau proteins. Acetylated tau, in particular, has recently been implicated in neurodegeneration and cognitive decline. HDAC6 reversibly regulates tau acetylation, but its role in tauopathy progression remains unclear. Here, we identified an HDAC6-chaperone complex that targets aberrantly modified tau. HDAC6 not only deacetylates tau but also suppresses tau hyperphosphorylation within the microtubule-binding region. In neurons and human AD brain, HDAC6 becomes co-aggregated within focal tau swellings and human AD neuritic plaques. Using mass spectrometry, we identify a novel HDAC6-regulated tau acetylation site as a disease specific marker for 3R/4R and 3R tauopathies, supporting uniquely modified tau species in different neurodegenerative disorders. Tau transgenic mice lacking HDAC6 show reduced survival characterized by accelerated tau pathology and cognitive decline. We propose that a HDAC6-dependent surveillance mechanism suppresses toxic tau accumulation, which may protect against the progression of AD and related tauopathies.


Asunto(s)
Disfunción Cognitiva/patología , Histona Desacetilasa 6/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Acetilación , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/patología , Disfunción Cognitiva/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Histona Desacetilasa 6/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fosforilación , Procesamiento Proteico-Postraduccional , Tauopatías/genética , Proteínas tau/genética
12.
Sci Rep ; 9(1): 825, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696850

RESUMEN

Bacterial ß-glucuronidase (GUS) enzymes cause drug toxicity by reversing Phase II glucuronidation in the gastrointestinal tract. While many human gut microbial GUS enzymes have been examined with model glucuronide substrates like p-nitrophenol-ß-D-glucuronide (pNPG), the GUS orthologs that are most efficient at processing drug-glucuronides remain unclear. Here we present the crystal structures of GUS enzymes from human gut commensals Lactobacillus rhamnosus, Ruminococcus gnavus, and Faecalibacterium prausnitzii that possess an active site loop (Loop 1; L1) analogous to that found in E. coli GUS, which processes drug substrates. We also resolve the structure of the No Loop GUS from Bacteroides dorei. We then compare the pNPG and diclofenac glucuronide processing abilities of a panel of twelve structurally diverse GUS proteins, and find that the new L1 GUS enzymes presented here process small glucuronide substrates inefficiently compared to previously characterized L1 GUS enzymes like E. coli GUS. We further demonstrate that our GUS inhibitors, which are effective against some L1 enzymes, are not potent towards all. Our findings pinpoint active site structural features necessary for the processing of drug-glucuronide substrates and the inhibition of such processing.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Glucurónidos/metabolismo , Bacteroides/enzimología , Dominio Catalítico , Clostridiales/enzimología , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Faecalibacterium prausnitzii/enzimología , Tracto Gastrointestinal/metabolismo , Humanos , Lacticaseibacillus rhamnosus/enzimología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
13.
J Mol Biol ; 431(5): 970-980, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30658055

RESUMEN

The human gut microbiota encodes ß-glucuronidases (GUSs) that play key roles in health and disease via the metabolism of glucuronate-containing carbohydrates and drugs. Hundreds of putative bacterial GUS enzymes have been identified by metagenomic analysis of the human gut microbiome, but less than 10% have characterized structures and functions. Here we describe a set of unique gut microbial GUS enzymes that bind flavin mononucleotide (FMN). First, we show using mass spectrometry, isothermal titration calorimetry, and x-ray crystallography that a purified GUS from the gut commensal microbe Faecalibacterium prausnitzii binds to FMN on a surface groove located 30 Šaway from the active site. Second, utilizing structural and functional data from this FMN-binding GUS, we analyzed the 279 unique GUS sequences from the Human Microbiome Project database and identified 14 putative FMN-binding GUSs. We characterized four of these hits and solved the structure of two, the GUSs from Ruminococcus gnavus and Roseburia hominis, which confirmed that these are FMN binders. Third, binding and kinetic analysis of the FMN-binding site mutants of these five GUSs show that they utilize a conserved site to bind FMN that is not essential for GUS activity, but can affect KM. Lastly, a comprehensive structural review of the PDB reveals that the FMN-binding site employed by these enzymes is unlike any structurally characterized FMN binders to date. These findings reveal the first instance of an FMN-binding glycoside hydrolase and suggest a potential link between FMN and carbohydrate metabolism in the human gut microbiota.


Asunto(s)
Mononucleótido de Flavina/metabolismo , Microbioma Gastrointestinal/fisiología , Glucuronidasa/metabolismo , Dominio Catalítico/fisiología , Clostridiales/metabolismo , Humanos , Cinética , Metagenoma/fisiología , Microbiota/fisiología , Ruminococcus/metabolismo
14.
Front Cell Neurosci ; 12: 346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356641

RESUMEN

Neurocan is a chondroitin sulfate proteoglycan present in perineuronal nets, which are associated with closure of the critical period of synaptic plasticity. During postnatal development of the neocortex dendritic spines on pyramidal neurons are initially overproduced; later they are pruned to achieve an appropriate balance of excitatory to inhibitory synapses. Little is understood about how spine pruning is terminated upon maturation. NrCAM (Neuron-glial related cell adhesion molecule) was found to mediate spine pruning as a subunit of the receptor complex for the repellent ligand Semaphorin 3F (Sema3F). As shown here in the postnatal mouse frontal and visual neocortex, Neurocan was localized at both light and electron microscopic level to the cell surface of cortical pyramidal neurons and was adjacent to neuronal processes and dendritic spines. Sema3F-induced spine elimination was inhibited by Neurocan in cortical neuron cultures. Neurocan also blocked Sema3F-induced morphological retraction in COS-7 cells, which was mediated through NrCAM and other subunits of the Sema3F holoreceptor, Neuropilin-2, and PlexinA3. Cell binding and ELISA assays demonstrated an association of Neurocan with NrCAM. Glycosaminoglycan chain interactions of Neurocan were required for inhibition of Sema3F-induced spine elimination, but the C-terminal sushi domain was dispensable. These results describe a novel mechanism wherein Neurocan inhibits NrCAM/Sema3F-induced spine elimination.

15.
J Biol Chem ; 293(48): 18559-18573, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30301767

RESUMEN

The glycoside hydrolases encoded by the human gut microbiome play an integral role in processing a variety of exogenous and endogenous glycoconjugates. Here we present three structurally and functionally distinct ß-glucuronidase (GUS) glycoside hydrolases from a single human gut commensal microbe, Bacteroides uniformis We show using nine crystal structures, biochemical, and biophysical data that whereas these three proteins share similar overall folds, they exhibit different structural features that create three structurally and functionally unique enzyme active sites. Notably, quaternary structure plays an important role in creating distinct active site features that are hard to predict via structural modeling methods. The enzymes display differential processing capabilities toward glucuronic acid-containing polysaccharides and SN-38-glucuronide, a metabolite of the cancer drug irinotecan. We also demonstrate that GUS-specific and nonselective inhibitors exhibit varying potencies toward each enzyme. Together, these data highlight the diversity of GUS enzymes within a single Bacteroides gut commensal and advance our understanding of how structural details impact the specific roles microbial enzymes play in processing drug-glucuronide and glycan substrates.


Asunto(s)
Bacteroides/enzimología , Microbioma Gastrointestinal , Glucuronidasa/química , Glucuronidasa/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Inhibidores Enzimáticos/farmacología , Ácido Glucárico/análogos & derivados , Glucuronidasa/antagonistas & inhibidores , Humanos , Conformación Proteica
16.
Protein Sci ; 27(12): 2010-2022, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30230652

RESUMEN

ß-Glucuronidase (GUS) enzymes in the gastrointestinal tract are involved in maintaining mammalian-microbial symbiosis and can play key roles in drug efficacy and toxicity. Parabacteroides merdae GUS was identified as an abundant mini-Loop 2 (mL2) type GUS enzyme in the Human Microbiome Project gut metagenomic database. Here, we report the crystal structure of P. merdae GUS and highlight the differences between this enzyme and extant structures of gut microbial GUS proteins. We find that P. merdae GUS exhibits a distinct tetrameric quaternary structure and that the mL2 motif traces a unique path within the active site, which also includes two arginines distinctive to this GUS. We observe two states of the P. merdae GUS active site; a loop repositions itself by more than 50 Å to place a functionally-relevant residue into the enzyme's catalytic site. Finally, we find that P. merdae GUS is able to bind to homo and heteropolymers of the polysaccharide alginic acid. Together, these data broaden our understanding of the structural and functional diversity in the GUS family of enzymes present in the human gut microbiome and point to specialization as an important feature of microbial GUS orthologs.


Asunto(s)
Bacteroidaceae/enzimología , Microbioma Gastrointestinal , Glucuronidasa/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica
17.
J Biol Chem ; 293(23): 8922-8933, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29678884

RESUMEN

The spread of dengue (DENV) and Zika virus (ZIKV) is a major public health concern. The primary target of antibodies that neutralize DENV and ZIKV is the envelope (E) glycoprotein, and there is interest in using soluble recombinant E (sRecE) proteins as subunit vaccines. However, the most potent neutralizing antibodies against DENV and ZIKV recognize epitopes on the virion surface that span two or more E proteins. Therefore, to create effective DENV and ZIKV vaccines, presentation of these quaternary epitopes may be necessary. The sRecE proteins from DENV and ZIKV crystallize as native-like dimers, but studies in solution suggest that these dimers are marginally stable. To better understand the challenges associated with creating stable sRecE dimers, we characterized the thermostability of sRecE proteins from ZIKV and three DENV serotypes, DENV2-4. All four proteins irreversibly unfolded at moderate temperatures (46-53 °C). At 23 °C and low micromolar concentrations, DENV2 and ZIKV were primarily dimeric, and DENV3-4 were primarily monomeric, whereas at 37 °C, all four proteins were predominantly monomeric. We further show that the dissociation constant for DENV2 dimerization is very temperature-sensitive, ranging from <1 µm at 25 °C to 50 µm at 41 °C, due to a large exothermic enthalpy of binding of -79 kcal/mol. We also found that quaternary epitope antibody binding to DENV2-4 and ZIKV sRecE is reduced at 37 °C. Our observation of reduced sRecE dimerization at physiological temperature highlights the need for stabilizing the dimer as part of its development as a subunit vaccine.


Asunto(s)
Virus del Dengue/química , Multimerización de Proteína , Proteínas del Envoltorio Viral/química , Virus Zika/química , Temperatura Corporal , Dengue/virología , Humanos , Estabilidad Proteica , Proteínas Recombinantes/química , Vacunas de Subunidad/química , Vacunas Virales/química , Infección por el Virus Zika/virología
18.
ACS Nano ; 12(2): 1544-1563, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29361211

RESUMEN

Non-Hodgkin lymphoma (NHL) is one of the most common types of hematologic malignancies. Pretargeted radioimmunotherapy (PRIT), the sequential administration of a bispecific antibody-based primary tumor-targeting component followed by a radionucleotide-labeled treatment effector, has been developed to improve the treatment efficacy and to reduce the side effects of conventional RIT. Despite the preclinical success of PRIT, clinical trials revealed that the immunogenicity of the bispecific antibody as well as the presence of competing endogenous effector molecules often compromised the treatment. One strategy to improve PRIT is to utilize bio-orthogonal ligation reactions to minimize immunogenicity and improve targeting. Herein, we report a translatable pretargeted nanoradioimmunotherapy strategy for the treatment of NHL. This pretargeting system is composed of a dibenzylcyclooctyne (DBCO)-functionalized anti-CD20 antibody (α-CD20) tumor-targeting component and an azide- and yttrium-90-(90Y) dual-functionalized dendrimer. The physicochemical properties of both pretargeting components have been extensively studied. We demonstrated that an optimized dual-functionalized dendrimer can undergo rapid strain-promoted azide-alkyne cycloaddition with the DBCO-functionalized α-CD20 at the physiological conditions. The treatment effector in our pretargeting system can not only selectively deliver radionucleotides to the target tumor cells but also increase the complement-dependent cytotoxicity of α-CD20 and thus enhance the antitumor effects, as justified by comprehensive in vitro and in vivo studies in mouse NHL xenograft and disseminated models.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antígenos CD20/inmunología , Dendrímeros/administración & dosificación , Inmunoconjugados/administración & dosificación , Linfoma no Hodgkin/terapia , Radioinmunoterapia/métodos , Radioisótopos de Itrio/administración & dosificación , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Dendrímeros/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inmunoconjugados/inmunología , Inmunoconjugados/uso terapéutico , Linfoma no Hodgkin/inmunología , Ratones , Nanomedicina/métodos , Radiofármacos/administración & dosificación , Radiofármacos/inmunología , Radiofármacos/uso terapéutico , Distribución Tisular , Radioisótopos de Itrio/uso terapéutico
19.
Proc Natl Acad Sci U S A ; 115(2): E152-E161, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29269393

RESUMEN

The gut microbiota harbor diverse ß-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in Escherichia, Salmonella, Klebsiella, Shigella, and Yersinia opportunistic pathogens, the structure of GusR has not been examined. Here, we explore the molecular basis for GusR-mediated regulation of GUS expression in response to small-molecule glucuronides. Presented are 2.1-Å-resolution crystal structures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand. The GusR-specific DNA operator site in the regulatory region of the E. coli GUS operon is identified, and structure-guided GusR mutants pinpoint the residues essential for DNA binding and glucuronide recognition. Interestingly, the endobiotic estradiol-17-glucuronide and the xenobiotic indomethacin-acyl-glucuronide are found to exhibit markedly differential binding to these GusR orthologs. Using structure-guided mutations, we are able to transfer E. coli GusR's preferential DNA and glucuronide binding affinity to S. enterica GusR. Structures of putative GusR orthologs from GUS-encoding Firmicutes species also reveal functionally unique features of the Enterobacteriaceae GusRs. Finally, dominant-negative GusR variants are validated in cell-based studies. These data provide a molecular framework toward understanding the control of glucuronide utilization by opportunistic pathogens in the human gut.


Asunto(s)
Proteínas Bacterianas/genética , Enterobacteriaceae/genética , Microbioma Gastrointestinal/genética , Regulación Bacteriana de la Expresión Génica , Glucuronidasa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Enterobacteriaceae/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reguladores/genética , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Glucuronidasa/química , Glucuronidasa/metabolismo , Humanos , Mutación , Operón/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...